Bioenergética, metabolismo e regulação da temperatura corporal

Os carboidratos, os lipídios e as proteínas podem ser utilizados pelas células para sintetizar grandes quantidades de ATP, que por sua vez é usado como fonte de energia para as funções celulares. As principais funções das moléculas de ATP são energizar a síntese de substâncias celulares importantes, a contração muscular e o transporte ativo através das membranas para absorção pelo trato gastrintestinal, pelos túbulos renais, formação de secreções glandulares e estabelecimento de gradientes de concentração iônica nos nervos, que por sua vez fornecem energia necessária para a transmissão de impulsos nervosos.

Apesar da suma importância do ATP para a transferência de energia, essa substância não constitui o depósito mais abundante de ligações de fosfato de alta energia nas células. A fosfocreatina contém ligações fosfato de alta energia várias vezes mais abundante, pelo menos no músculo. Ao contrário do ATP, a fosfocreatina não pode atuar como agente de acoplamento direto para transferência de energia entre os alimentos e os sistemas celulares funcionais.

Todavia, ela é capaz de transferir energia de modo intercambiável com o ATP. Quando quantidades adicionais de ATP estão disponíveis na célula, grande parte dessa energia é utilizada na síntese de fosfocreatina, formando assim um reservatório de energia. Quando o ATP começa a ser consumido, a energia existente na fosfocreatina é rapidamente transferida de volta ao ATP e, a seguir, deste para os sistemas funcionais das células.

Este efeito mantém a concentração de ATP num nível quase máximo enquanto houver fosfocreatina no interior das células. Assim, podemos também denominar a fosfocreatina como um sistema “tampão” do ATP. A energia dos alimentos é quase sempre convertida em calor corporal, uma vez que o trabalho desenvolvido através do uso da energia gera calor. É o caso do calor produzido através do exercício muscular e do movimento cinético das moléculas através do sistema circulatório.

Por consequência, a determinação da produção de calor corporal constitui uma excelente maneira de estudar o metabolismo geral do corpo. A caloria é a unidade empregada para esta finalidade.

Os principais fatores que afetam o metabolismo corporal são o exercício, o hormônio tireóideo tiroxina e a estimulação simpática. O metabolismo basal funciona como método para comparar as intensidades metabólicas entre indivíduos, medindo a intensidade metabólica inerente dos tecidos, independentemente do exercício e de outros fatores externos que tornariam impossível a comparação do metabolismo de uma pessoa com o de outra.

O nível de temperatura considerado normal varia entre 36,5 a 37 graus Celsius, embora cada pessoa deva ser avaliada em relação às temperaturas dos demais sistemas orgânicos. A pele, os tecidos subcutâneos e, sobretudo, a gordura dos tecidos subcutâneos constituem um isolante térmico do organismo. Através do fluxo sanguíneo, ocorre constante transferência de calor do centro do corpo para a pele. Assim, a pele constitui, obviamente, um sistema “radiador” eficaz para o corpo.

Os principais processos pelos quais ocorre perda de calor da pele para o meio ambiente incluem a radiação, a condução, a convexão e a evaporação. A irradiação ocorre na forma de raios térmicos infravermelhos que são ondas eletromagnéticas que se irradiam da pele para o meio ambiente mais frio. Representa 60% da perda total de calor. A condução representa perda pequena e ocorre da superfície do corpo para objetos mais frios. A convexão ocorre a partir de correntes aéreas. A evaporação contribui com as perdas insensíveis de água através da pele e dos pulmões.

Quando o corpo torna-se superaquecido ocorre secreção de grandes quantidades de suor na superfície da pele pelas glândulas sudoríparas a fim de produzir rápido esfriamento do corpo por evaporação. A estimulação da área pré-óptica na parte anterior do hipotálamo estimula a sudorese. Os impulsos provenientes desta área e que induzem a sudorese são transmitidos nas vias autonômicas para a medula e, daí, através do fluxo simpático, para as glândulas sudoríparas da pele de todo o corpo. As fibras nervosas simpáticas colinérgicas que terminam nas células glandulares desencadeiam a secreção.

A temperatura do corpo é regulada quase totalmente por mecanismo de controle nervoso por feedback, com quase todos eles operando através de um centro termorregulador localizado no hipotálamo. Quando o corpo se torna superaquecido, o hipotálamo aumenta a velocidade de perda de calor através de dois mecanismos principais que são a evaporação através das glândulas sudoríparas e a inibição dos centros simpáticos no hipotálamo posterior, que normalmente provocam constrição dos vasos cutâneos; esta inibição permite a ocorrência de vasodilatação, com consequente e acentuado aumento na perda de calor pela pele.

Quando ocorre resfriamento do corpo, o hipotálamo posterior ativa fortemente os sinais simpáticos para os vasos cutâneos e ocorre intensa vascularização da pele por todo o corpo. Os calafrios ou tremores podem aumentar a produção de calor em até cinco vezes o normal. O controle comportamental da temperatura corporal ocorre através da comunicação da área pré-óptica do hipotálamo com a área pré-central, transmitindo uma sensação psíquica de superaquecimento, o que faz o indivíduo procurar um ambiente mais frio.

Por outro lado, toda vez que o corpo se torna muito frio, o indivíduo faz ajustes ambientais apropriados para restabelecer a sensação de conforto como procurar uma sala aquecida. Para os seres humanos, trata-se do único mecanismo realmente eficaz para o controle do calor corporal em ambientes que apresentam temperaturas extremas.

Após secção da medula espinhal no pescoço, acima do nível em que os nervos simpáticos saem da medula, a regulação autonômica da temperatura corporal torna-se quase inexistente, visto que o hipotálamo não pode mais controlar o fluxo sanguíneo cutâneo ou o grau de sudorese em qualquer área do corpo. A febre, que significa uma temperatura corporal acima da faixa normal, pode ser provocada por anormalidades no próprio cérebro, por substâncias tóxicas que afetam os centros termorreguladores, por doenças bacterianas, por tumores cerebrais ou por desidratação.

Os pirógenos bacterianos elevam o ponto de ajuste do termostato hipotalâmico. A aspirina mostra-se especialmente eficaz para reduzir o ajuste hipotalâmico elevado em consequência de pirógenos, mas não produz redução para a temperatura normal.